技术资料栏目
全球卫星搜救系统COSPAS/SARSAT简介
发布时间:2022-09-13    发布人:NOAA    浏览次数:
    全球卫星搜救系统COSPAS/SARSAT是由加拿大、法国、美国和前苏联联合开发的全球性卫星搜救系统,它是国际海事卫星组织推行的全球海上遇险与安全系统的重要组成部分。

  概述

1.1

   COSPAS/SARSAT系统是由加拿大、法国、美国和前苏联联合开发的全球性卫星搜救系统,它是国际海事卫星组织推行的全球海上遇险与安全系统的重要组成部分。该系统使用低高度卫星为全球包括极区在内的海上、陆上和空中提供遇险报警及定位服务,以使遇险者得到及时有效的救助。COSPAS/SARSAT全球卫星搜救系统已成功地应用于世界范围内大量的遇险搜救行动中,在2247起遇险事件中已成功地救助了7354人。国际海事组织在<海上人命与安全公约>中明确规定:所有总吨数300吨以上的船舶必须按照要求装备遇险定位与搜救设备。COSPAS/SARSAT全球卫星搜救系统以其可靠、方便、免费使用等优点赢得了人们的青睐,该系统不仅广泛地应用于航海领域,而且也对航空业和陆地用户提供全球性的卫星搜救服务。

1.2

   Cospas-Sarsat全球卫星搜救系统采用由近地轨道卫星(LEOSAR)、中轨道卫星(MEOSAR)和静止轨道卫星(GEOSAR)组成的网络,该系统还包括地面接收站和控制与协调中心。其任务在于提供准确可靠的求救信号和定位数据,协助搜寻和救援(SAR)机构援救遇险人员。Cospas-Sarsat全球卫星搜救系统自1985年开始运作以来,已经拯救了26,000多人的生命。
海上、空中和陆地的救援行动包含警报、定位和救援三个步骤。此前,警报和定位使用的都是121.5兆赫的模拟频率。直至2009年,Cospas-Sarsat全球卫星搜救系统决定逐步停止接收121.5兆赫频率,而仅使用406兆赫的数字频率触发警报。这种数字频率的安全性能更高,传递信息更为全面,也减少了发送错误警报的次数。
尽管如此,地面、海上航船和空中飞行器仍可继续接收121.5兆赫频率,这一频率仍是用于定位遇险人员最有效可靠的系统。因此,求救无线电信标应为双频系统,方可确保精准定位。

系统构成

示位标

遇险示位标实际上就是一台可以完全独立工作的全自动发信机,示位标有三种形式:航空用紧急示位发射机(ELT),航海用紧急无线电示位标(EPIRB),个人位置示位标(PLB)。遇险示位标使用的频率有:121.5MHz、243MHz、406MHz。当用户遇险后,遇险示位信标可以通过人工或者自动由遇险时的撞击、水浸而激活(信标激活后可以存活48/小时),发出121.5/406MHz的遇险报警信号,经卫星转发后,由遍布全球的本地用户终端(LUT)接收并计算出遇险目标的位置,随后经国际通信网络通知遇险地区的相关搜救部门进行搜救。

卫星星座

搜救卫星星座是由前苏联的COSPAS卫星和美国的SARSAT卫星组成,卫星高度为:850~1000km,卫星运行轨道为极轨道,现有六颗卫星在工作。搜救卫星的主要任务是对遇险示位信标发出的遇险报警信号进行变频、存储、转发等处理,然后送给本地用户终端(LUT);对121.5/243MHz的遇险报警信号以下行频率1544.5MHz实时转发给本地用户终端(LUT)进行处理;而对406MHz的遇险报警信号既可以以下行频率1544.5MHz实时转发给本地用户终端(LUT)进行处理,也可以先存储起来遇到LUT再转发。由于该系统的卫星轨道较低(850~1000km),单颗卫星覆盖地球的面积比地球同步静止卫星小。因而,在目前六颗卫星工作的情况下,对遇险目标来说存在着一定的等待时间,尤其是在靠近赤道地区,两颗卫星飞越同一地区的时间间隔最长可达1.5小时。因此,一些国家现在正在考虑使用地球同步静止卫星实现对信标信号的实时转发,以消除卫星的等待时延。目前,由印度发射的INSAT-2B同步卫星装备有406MHz转发器,可以实现对中国全部陆地和海域的实时覆盖。

地面分系统

地面分系统包括本地用户接收终端(LUT)和搜救任务控制中心(MCC)两大部分:(1)本地用户接收终端(LUT),本地用户接收终端的作用是:跟踪搜救卫星并接收卫星转发下来的遇险示位信标信号和数据,然后解码、计算并给出信标识别码和位置数据,同时又实时修正卫星的轨道参数,把信标的报警数据和统计信息送给相应的搜救任务控制中心(MCC)。(2)搜救任务控制中心(MCC),搜救任务控制中心(MCC)必须和本地用户接收终端(LUT)相联接,一个MCC至少要联接一个LUT,美国的MCC联接了12个LUT,其中有一个是静止轨道的LUT。MCC的主要功能是:收集、整理、储存和分类从LUT与其它MCC送来的数据;在COSPAS/SARSAT系统内与其它MCC进行信息交换;过滤虚假报警,解除模糊值;把报警和定位数据分发到有关的搜救协调中心(RCC)或搜救协调点(SPOC)。目前世界上已经有21个国家建立了38个LUT,共有19个MCC处于工作状态。LUT的地理分布可以把地球的大部分表面覆盖,有些地区特别是东南亚地区由多个LUT重叠覆盖;个别地区如非洲南部尚未建有LUT,但该系统可以由搜救卫星利用星上存储器把遇险信号存储起来携带信号飞行,直到有LUT接收到此遇险信号。

How it all works together

   Search and Rescue (SAR) instruments are flown on board Low Earth Polar Orbiting (LEO), Medium Earth Orbiting (MEO) and Geostationary Earth Orbiting (GEO) satellites provided by the United States, Russian Federation, India, and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). These satellites can detect signals coming from the Earth’s surface transmitted by 406 emergency distress beacons. These beacons operate on a 406MHz frequency and are battery powered radio transmitters designed solely to send a distress signal if activated. Once a beacon is activated it begins to transmit a continuous radio signal which is first picked up by the satellite instrumentation, then used by search and rescue to locate the emergency and render assistance.
   There are three types of 406MHz beacons, each with unique properties depending on the type of environment it is designed for: Emergency Locator Transmitters (ELTs) used by the aviation community, Emergency Position Indicating Radio Beacons (EPIRBs) used in the maritime environment, and Personal Locator Beacons (PLBs) used by individuals in multiple wilderness activities.
   When activated, ELTs, EPIRBs, and PLBs transmit the distress signal on the 406 MHz frequency. This signal frequency has been designated internationally for use only for distress. Imbedded in this frequency is a unique digital code called a HEX ID. The HEX ID identifies the type of beacon and, if the beacon is registered, important information that helps search and rescue (SAR) specialists determine the best course of action.
   This information can include: who the beacon owner is, the type of aircraft or vessel the beacon is associated with (for ELTs and EPIRBs), emergency points of contact, flight plans, float plans and wilderness trip plans, and much more. After the satellite receives a beacon signal, it relays the signal to ground stations referred to as local user terminals (LUTs). The LUT processes the data, computes the location of the distress beacon, and transmits a decoded alert message to its associated national Mission Control Center (MCC). This happens almost instantaneously after the initial beacon signal is received.
    The MCC then automatically performs matching and merging of alert messages with other received messages, geographically sorts the data, and transmits a distress message to the closest appropriate SAR authority such as a national Rescue Coordination Center (RCC), a foreign SAR Point of Contact (SPOC) and another MCC if the beacon is for example registered to another country. The RCC investigates the beacon alert and launches rescue assets to find the parties in distress if the distress is deemed authentic. This can happen much quicker when the beacon is properly registered.
   Return Link Service (RLS) is a new Cospas-Sarsat system enhancement which is coordinated by the French Space agency, CNES (Centre national d’études spatiales). This is an option built into the next generation 406 beacon itself.
In the case of the United States, the U.S. Mission Control Center (USMCC) receives distress signal data from its LUTs as well as other MCCs that have picked up the signal. It then transmits the distress message information to the closest U.S. national SAR services, such as the U.S. Air Force or U.S. Coast Guard RCCs, depending on the type of distress and its location.
   The USMCC also transmits distress messages internationally to SPOCs located in other countries that might have assets in closer proximity to the distress, even though the distress situation is technically taking place within the USMCC service area.
 

搜救系统介绍

自我国加入国际搜救卫星组织以后,交通运输部始终关注着全球卫星搜救系统的技术发展。1991年,北京全球卫星捷救系统为我国建设的“全球海上遇险与安全系统工程”的一个子系统,开始了项目建设工作。并于1998年1月26日顺利通过了国际组织的入网测试,进入全功能运行状态。同时,我国在国际搜救卫星组织的身份变更为“地面设备提供国”。全部设备现安装在北京交通部办公大楼内。北京系统建成后,在我国的版图上实际已建有三套全球卫星搜救系统。(1)北京系统的服务区覆盖了除台湾以外的我国所有陆地疆土和绝大部分的海域。(2)香港在北京之前就建有系统,目前由香港特别行政区海事处负责运行和管理,其服务区含盖了北京系统无法实时覆盖的我国南部海域和岛屿。(3)台湾的系统建设几乎与北京同步,目前由台湾民航部门管理,其在国际组织的名称是国际电信开发公司。其服务区覆盖了全部台湾岛和环岛的周边海域。北京系统设备选用了当时国际上先进的、高性能HP-9000系列服务器和工作站。LUT采用了冗余备份结构,可以同时对两颗卫星分别进行跟踪,并由数据信号处理器对卫星下行信号中的121.5、243和406MHz信号进行实时处理;同时还可以对406MHz信号进行延时处理。MCC采用主/备双机结构运行,目前通过X.25分组交换、AFTN航空专用通信网、Telex电传和FAX传真四种接口,与国际通信网联接。按照国际组织编制的数据分布计划,各MCC之间实时交换定位数据和卫星轨道参数等信息。四种通信接口依据可靠程度设有优先等级,互为备份,确保系统通信畅通。当北京MCC从自己的LUT或其他MCC收到报警数据后,首先判定示位标报警的位置是否在自己的服务区内。如果在服务区内,那么则立刻将报警位置和遇险示位标的登记信息,通知国家海事局;若报警位置在服务区以外,则通过西北太平洋区的节点MCC(日本MCC),将数据传送给相关的国家。

搜救系统应用

在北京系统投入运行之前,我国的搜救指挥协调部门,主要是接收来自香港和日本系统传来的报警信息。北京系统投入运行之后,几年来,这套系统成功的担负起了其搜救服务区内的遇险报警任务。截止到目前为止,系统已准确捕捉到二十八次真空的遇险报警,经国家海事局组织实施救助,使近四百余名遇险人员安全脱险。几年来的实践证明,北京卫星搜救系统的投入使用,极大地提高了我国海上和陆地的遇险报警能力,为我国遇险搜救手段的现代化,奠定了可靠的基础。个人信标业务长期以来,遇险示位标基本都是作为船舶和飞机的必备设备,安装在这些载体上的。其他还有极少数的示位标,是作为系统本身运行和技术发展需要,而设置的轨道修正和测试信标。全球卫星搜救系统,除了航空和航海两大系统的用户之外,随着人们经济活动的增加,对人命安全问题的进一步重视,加之国际组织成员国中要求提高系统利用率的呼声强烈,在系统中已开发出便于携带、使用方便、针对个人使用的遇险示位标。体积只有现在流行的手机大小的个人用示位标,去年已经上市。美国、加拿大、丹麦、德国、挪威和俄罗斯等国,都先后开展了个人信标业务。从目前了解到的情况来看,国外个人信标的用户,以政府的关键部门、军事机构、高科技领域、国家重要的经济部门、体育探险和大公司的高层人士为主。用户只需在系统运行管理部门授权的公司,购买或短期租用遇险示位标,并交纳一定的示位标购置费和年度注册登记费或租金即可携带使用。国际市场上现有的遇险示位标的种类,完全可以满足各种运输设备和个人的需求。而在我国目前只有在远洋运输、渔业生产和民用航空领域,装备了遇险示位标,在其他领域尚未充分使用。如果在海、陆、空各个领域,能够充分利用全球卫星搜救系统,就可以为人民的生命财产,提供安全保障,更好地为我国的经济建设服务。我国幅员辽阔,地理条件复杂,经济发展迅速。特别是改革开放以来,使航海、航空、长途运输、地质勘探、科学考察、登山探险等经济活动发展迅猛。而我国目前的地面网络,还很难做到大范围的覆盖,更难以有及时准确的遇除报警和搜救网络;还有相当多的边远地区,甚至还无法建立地面网络。利用卫星搜救系统,实现遇险的报警和定位,是我国目前在现有技术条件下最有效的全球搜救手段。

	

SARSAT Statistics:Registered Beacons in the US


NOAA satellites helped save 330 lives in 2021

Emergency beacons continue to show life-saving value

NOAA’s fleet of advanced satellites are essential for predicting weather and climate, and last year they also helped rescue 330 people from potentially life-threatening situations throughout the United States and its surrounding waters.

Of the 330 U.S. rescues, 195 were water rescues, 29 were from aviation incidents and 106 were from events on land. Alaska had the most SARSAT rescues with 55, followed by Florida with 52 and California with 37. 

NOAA’s polar-orbiting and geostationary satellites are part of the global Search and Rescue Satellite Aided Tracking system, or COSPAS-SARSAT, which uses a network of U.S. and international spacecraft to detect and locate distress signals sent from emergency beacons from aircraft, boats and handheld Personal Locator Beacons (PLBs) anywhere in the world. Since its start in 1982, COSPAS-SARSAT has been credited with supporting more than 48,000 rescues worldwide, including more than 9,700 in the United States and its surrounding waters.

A graphic showing 3 categories of satellite-assisted rescues that took place in 2021: Of the 330 lives saved, 195 people were rescued at sea, 29 were rescued from aviation incidents and 106 were rescued from incidents on land.
A graphic showing 3 categories of satellite-assisted rescues that took place in 2021: Of the 330 lives saved, 195 people were rescued at sea, 29 were rescued from aviation incidents and 106 were rescued from incidents on land. (NOAA)

When a NOAA satellite pinpoints the location of a distress signal in the U.S., the information is relayed to the SARSAT Mission Control Center at NOAA’s Satellite Operations Facility in Suitland, Maryland. From there, the information is sent quickly to Rescue Coordination Centers, operated either by the U.S. Air Force for land rescues, or the U.S. Coast Guard for water rescues. NOAA also supports rescues globally by relaying distress signal information to international SARSAT partners.

Among the success stories last year, a miner was rescued from a 20-foot shaft about 30 miles northwest of Phoenix, Arizona, in the Bradshaw Mountains. The Air Force Rescue Coordination Center received the alert from the PLB and contacted the owner, who provided the details of the distress. The Yavapai County Sheriff’s Office deployed a helicopter and emergency medical units to the scene. Rescuers pulled the miner from the shaft and transported him to a Phoenix hospital for treatment of multiple injuries.

“Each rescue shows the SARSAT system works as planned," said Steve Volz, Ph.D., assistant NOAA administrator for its Satellite and Information Service. "Its life-saving ability is built on four decades of teamwork with the U.S. Coast Guard, the U.S. Air Force, NASA and our international partners.” 

By law, beacon owners are required to register their devices online with NOAA. The registration information helps provide better and faster assistance to people in distress, and reduces false alarms. It may also provide what type of help is needed.

  • 国家高新技术企业
  • 拥有二十余项软件著作权
  • 通过ISO9001质量管理体系和国军标质量管理体系认证
  • 拥有卫星测控综合基带及导航测控一体化微带天线两项发明专利